（株）オキシーテックの海洋実験施設とそのロケーション

注）印はオキシーテックの施設
社屋

“海”の可能性にチャレンジ

SEATEC II 近景
目次

1. ソーナーにおけるパラダイムシフト：雑音の積極的利用
 舞鶴工業高等専門学校 森 和義 5

2. 海と私の間にあるもの
 地球フロンティア研究システム 升本 順夫 9

3. 中国出張報告記
 産業技術総合研究所 計量研究所 今村 徹11

4. 操作も運搬も簡単などにかく早いヨットを作る
 東京大学生産技術研究所 木下 健15

5. 主要設備のご紹介
 計測船 第二いこい丸 22

6. Sea Paradise ..23

7. 営業内容 ..24
ソーナーにおけるパラダイムシフト：雑音の積極的利用

舞鶴工業高等専門学校 森 和義

1. はじめに

従来のソーナーにおいて、周囲雑音は計測対象の音響特性を乱し、探知を妨げる邪魔者と考えられてきた。ところが、海中周囲雑音を物体探知に積極的に利用しようとする新しい考え方がカリフォルニア大学スクリプス海洋科学研究所のBuckingham研究グループによって提案されている。Buckinghamらは、陸上と海上において、人間の視覚は太陽という安定した自然光源によって空間認識を行っている点に着目した。彼らは、海中での空間認識に利用できる自然音源として周囲雑音に注目したのである。広く知られているように、海中では様々な雑音が常に発生している。例えば、10kHz以上の音波域では、水の分子による熱雑音が主な発生源となり、100kHz～10kHzでは風浪による波のくずれるときの音や気泡破壊そうたな衝撃音、海面近くの空気の乱流による圧力変動の水中への伝搬などが現れる。20～1kHzのより低い周波数域では、遠方にある不特定多数の海洋学観測船によって作り出されることも多い。また、テッポウウオやフジツボ等の数々の海中生物によって発生するいわゆるテンプラノイズも挙げられる。このような海中でも陸上における太陽と同様に物体を探知するためのさまざまな音源が存在しているのである。

このように、周囲の太陽を想定した海中物探取手法ということで、本手法はAcoustic Daylight Imaging（音響昼光撮影法）と呼ばれている。この手法は、アクティブでもパッシブでもない第3のソーナー方式として注目されており、従来のソーナーが雑音を除去することに専念していたのに対

2. Buckinghamからの映像化システム

Acoustic Daylight Imagingでは、海中での自然周囲雑音を音源として物体からの反射波や散乱波を検出し、その強度を各方位ごとに白黒や色で示すことで物体像を得る計測手法である。Buckinghamらは、図1のようにネオプレンフォームで覆われた直径3[m]の球面状反射板を備え、焦点に126個の圧電セラミックハイドロフォンアレイを配置した映像化装置を開発している。

図1：Buckinghamらが開発した映像化システム（http://extreme.ucsd.edu/ADONIS.htmlより引用）
このシステムは8～80 kHzの帯域で動作し、最も高い周波数ではビーム幅は約1°となり、およそ100 mレンジで1.5 mの角度分解能に相当する。ビームフォーミングは、位相や時間遅延操作ではなく、反射板の焦点に配置された受物素の幾何学的配置によって実現される。各受物素子は反射板を通じて独立したビームを形成することになり、合計で126個のビームを提供することになる。水平方向の探知範囲は約12°となり、垂直方向ではこれよりわずかに範囲は減少する。各受物素子で得られた信号は、対数スケールで16分割されたバインドパスフィルタングを通過した後に、各帯域毎に30 spsでサンプリングされる。その後、平均・正規化処理を施されて映像化される。図2に映像の例を示す。

図2：Buckinghamらの実験結果。
(a) 外観図 (b) 58-77 kHz (c) 1-4の各方向におけるスペクトル (d) 10-14 kHz帯の映像
(http://extreme.ucsd.edu/ADONIS.htmlより引用)

3．筆者らの空中模擬実験

Buckinghamらが提案している反射板を用いた映像化装置は、反射板の曲率半径によって探知範囲が固定されており、その範囲はおよそ12°程度である。これでは、広い海中を対象とした場合に問題がある。そこで、筆者らは受物素アレーによる広帯域ビームフォーマを用いて、より広い180°の範囲における物体探知を試みてきた。図3に筆者らの空中模擬実験の配置を示している。

図3：筆者らの空中模擬実験の配置

雑音源は受物素アレーの中心から半径2.46 mの円上を14個の線に分割し、各線に4個の送波器を配置することによって実現した。送波器の個数は14個であり、送波器をNo.1からNo.14に移動させながら個別に計測を行った。対象物体は幅48 cm×高さ52 cm×奥行き28 cmの直方体であり、受物素アレーの中心から0°の方向に13.6 mの距離に45°傾けて配置した。今回の実験では、雑音源から白色雑音を出力し、No.1～14で全て同じ出力レベルとした。精密
騒音計によって対象物体付近の音圧レベルを測定したところ約81dBであった。受波器アレーレは受波器数48個、間隔0.02mとし、計測された信号はサンプリング周波数15kHz、量子化ビット数12bitでA/D変換されて計算機に取り込まれ、アレーレ信号処理として遅延和アレーレ処理が行われた。STFT (Short-Time Fourier Transform)における窓関数の大きさは64点で、さらに64点の窓を行い128点でFFTを順次行った。窓関数の移動幅は16点とし、窓の移動回数は100回とした。これは、全体で1680点、すなわち0.112秒間測定された信号を解析したことになる。また、ビームの指向角度は±90°の範囲を45分割した。周囲雑音の指向性を実現するために、次の3つの条件で受波器信号を合成した。それぞれの合成波に対して、遅延和アレーレ処理を行った。

条件1．前方照明（Front-Light）
対象物体位置から見て前方に雑音源が存在すると想定して、No.1、2、13、14の各受波器信号を時間軸で合成した。

条件2．後方照明（Back-Light）
対象物体位置から見て後方に雑音源が存在すると想定して、No.5～10の各受波器信号を時間軸で全て合成した。

条件3．全方位照明（All-Light）
全周囲に雑音源が存在する場合は、No.1～14の全ての各受波器信号を時間軸で合成した。

図4に処理結果を示す。これらの処理結果は、ターゲットが存在する場合としない場合の相対パワーソを示している。(a)は前方照明の結果で、ターゲットの存在する0°付近でレベルが強くとなっており、7dB以上に違している部分もあることが確認できる。ターゲットからの反射波が受波器アレーレに直接到達したものと考えられる。(b)は後方照明の結果で、ターゲットの存在する0°付近でレベルが弱くなっており、-4.5dBも低下しているのが確認できる。後方で発生している雑音をターゲット遮っていると考えられる。(c)は全方位照明の結果で、(b)と同様にターゲットの存在する0°付近でレベルが弱くなっている。ただし、せいぜい-3.5dB低下している部分が見られる程度であり、後方照明に比べれば弱まり方は小さい。これは、全方位照明ということで前方と後方の両照明の影響が混在して表れているものと考えられる。

図3：錶音の空中模擬実験結果

—7—
3. おわりに

地中海の音波を用いた物体探知手法は、計測ビームから音波を発生する必要がなく、対象物体に気づかれることがない。したがって、潜水艦や魚雷の探知など軍事的な応用が期待できるだろう。また、周辺音に敏感な海産物の計数などの他の様々な用途への発展も期待できる。Buchinghamらは、彼らのホームページ上で実験結果を公開しており、実際の海中で計測された動物も見ることができる。アドレスは、http://extreme.ucsd.edu/ADONIS.htmlとなっているので、参照していただきたい。

また、筆者らの提案手法は、Buchinghamらの提案している手法に比べて探知範囲では上回るもの、解像度の面では劣る。今後は、信号処理手法などをさらに検証し、地中海実験に向けて研究を発展させていきたいと考えている。

参考文献

4. 濱上佳寿洋、森 和義、北原紀之、松田 稔、山野千晴、尾崎俊二、沖田芳雄 "周辺音を用いた物体探知における雑音方向性の影響：第二報～ターゲットの大きさ、位置、向きを変化させた実験結果～" 海洋音響学会2001年度研究発表会講演論文集 pp.49-52 (2001)
海と私の間にあるもの

地球フロンティア研究システム 升本順夫

波を詠み、流れに思いを懸せる。感性の赴くまま、感情が流されるまま。潮を見てわめ、瀬を食べ。豊かな恵みに感謝しつつ。時には圧倒的な力の差から来る恐怖に住みながらも、誰かが我々日本人は海と手をたたき合わせて来たのではないだろうか。では、私と海との関係は如何であろうか。海の物理を研究する者として、この問いは避けなくてはならないものだろう。研究者のみならず、何らかの形で海を仕事の対象としている者にとって、考えてみる必要のある問いであろう。普段の忙しさを理由に後へ後へと回されてきたところへ、原稿執筆の依頼があった。ちょっと手を休めて考えた良い機会を得たようだ。

人と海、この付き合いには直接的なものと間接的なものがある。その違いを区別する明確な基準は思いつかないが、人と海の間で取る事柄の空間規模や時間スケールに依存するであろう。一般に、直感として感じ取れる時間空間規模は限られている。あまりに小さなミクロの世界も、逆に広い過ぎるマクロな世界も、我々の想像力では実感が沸かず、他人事にしか感じられないことが多い。実感の沸く範囲が直接的な関係というものかもしれない。

人の営みを振り返れば、人と海の間を取り持つ事柄は、まずは想像可能な、多少に即物的なところから始まっている。いわゆる恵みの海、食料供給源としての海である。冒頭に示した関係も、人間の五感のフィルターを通じているが、即物的な身近さを超えるものではない。この他にも輸送手段としての海や、戦いの場としての海は、人と海のつながりとして古くから続いている。これらの側面では、そこに関係する人々は直接海を感じ、その重要性を推しはかることが可能となる。直接海と接することがなくとも、手にした魚介類から海を感じることは簡単であるし、異国情緒豊かなものに接して海のかなたの国々に思いを馳せることも可能だ。このような直接的、即物的な関係は、これからもなくなることなく続いて行くことであろう。

近年、経済発展と共にレジャーとしての海という新たな一面が加わった。初めに、単に遊覧としての時間の利用だけが目的とされていたかもしれないが、その後徐々に意味合いが変わっていき、それに感じる経済的な余裕ができる一方、居住接近が崩れ、街は高層ビルが溢れるコンクリートの世界へと変わって行く。このような街での人為的な圧迫から、構造物の圧迫感から逃れるために、多くの人は山へ登り、海に出かけるようになる。自然とのふれあいを求めて、と言われることが多いが、ここには何かあるのだろうか。山頂に立てばその上には雲しかない。海辺に立てば水平線までの広がり。夜ともかく、どちらも星空の世界である。天空の果て、大海原の果ては永遠を表し、それらと私との間を隔っているは何もない。直接時間の果てと向き合う、大切な思考の空間である。「我想う、故に我在り」の言葉の通り、自己の確立に思考が本質であることは、洋の東西を問わず、時代を超えて真実であろう。この空間は、唯一実在空間を超え、直接と間接の橋渡しのできる場所かもしれない。果たして私はこの思考の空間を堪能できているだろうか。

全てがスピードの時代、情報化の時代。消去されない情報量が猛スピードで目や耳から脳裏をかすめて無限の空間へと消えてゆく。その流
れに流されまいと必死に足を踏ん張るが、身体は緩やかに流され続け、情報という海で溺れそうになる。今こそ、情報の流れから抜け出し、思考の空間を訪ねる必要があるのではないか。いずれにせよ、レジャーとしての海も、多かれ少なかれ直接的に我々に働きかけてくる存在である。

最近、我々と海との関係に、気候変動の海という側面が更に加わった。しかし、この関係はこれまでのような直接的な関わりとは異なり、大气海洋の大規模な力と気候の変動が、気候変化あるいは天気というフィルターを通じて間接的に我々に関わっているだけである。我々の行動が気候変動に影響を与えるとしても、それは道筋は直接的ではない。我々の感覚は、直接的な関係を逸脱すると、とたんに純感になる。自然を底無しで、全てを浄化してしまうという考えに落ち込みそうとなる。このため、街ゆく人々からはもはや海の記憶は抜け落ち、全てが得体の知れない自然の脅威に押し付けられる。この脅威に関する情報も、様々な場所から絶えず流され、猛スピードで頭の中を駆け抜けていく。

海の物理過程や大气海洋系の気候変動を研究する者として、気候変動に関する海の役割を多くの人に知ってもらうことは一つの重要な仕事である。海を単なる研究対象として扱うことは可能である。自らの内側に取り込むわけではなく、また自らの外へ積極的に展開するわけでもなく、ただ客観的に海の物理を観る。しかしそれでは象牙の塔に篭り、一般社会との関係を拒絶する、過去の悪い学者と同様なものではないか。これではあまりに悲しい。ようやくその重要性が理解されできた新しい形の人と海との関係を、もっと直接的な関わりへと変えていく努力も我々の義務であろう。より多くの人々を思考の空間へ誘い出し、間接的な関係に直接的な結びつきの糸を与えるきっかけを作らなくてはいけない。「言うは易し、行うは難し。」—研究者として何が出来るのか。我々はただ情報の流れに足をすくわれ、新たに小さな情報を加えるだけなのかかもしれない。

さて、そろそろ筆を置いて海辺へ出かけるとしよう。広大な思考の空間へ、糸口を探しに。
中国出張報告記

産業技術総合研究所 計量研究所 今 村 徹

1．訪問の目的

日本の隣国である中国は文明発祥の地であり、歴史上に於いて両国は長期間に渡って密接な交流を結んできた。日本は現在世界第2位の国民総生産を上回り、世界経済の主要国と成っている。中華の国土は約960万平方キロメートルであり、その人口は約12億人である。これを日本の現状と比べると、面積に於いては約25倍であり、人口に於いても約10倍で、中国が大きな国家であると認識される。昨年に於いても既に中国各地を訪問し、各地の地域内に於いて密接な協力を遂行している。これにより、中国と日本の関係を強化するための機会が生まれている。特に、アジア太平洋地域に於いては、Asia Pacific Economic Cooperation（APEC）の下に日本は重要な役割を担っている。中国は先に述べたように巨大国であり、分野によっては高度な水準に達しているが、科学技术に関する多くの分野ではなお他国の協力を必要とされている。他に先進国ではない隣国である我が国が、中国の経済発展において積極的な役割を果たすることは有益であり有効であると考えられる。このような状況下に於いて中国の関連研究所を訪問して、日本との友好関係を確認すると共に共同研究の可能性を探ることを目的として本出張を実施した。

(2000年8月27日～同年9月2日)

2．訪問の目的

1）中国計量科学研究院

標記研究所 Foreign Affair Office 工程師のMrs. Deng Yilin の案内で、旧知である Prof. Shi Changyan (Deputy Director) を訪ねた。2000年11月には、つくば市でAsia-Pacific Symposium on Mass, Force and Torque (APMF2000) が開催される予定であったが、同時期にバンコク市（タイ）では Asia Pacific Metrology Program（APMP）の総会が予定されていた。その為にProf. Shi はバンコク市に出張する予定であり、つくば市には Prof. Liji Wang が来訪する予定である旨を話された。計量研究所で翻訳した「国際単位系（SI）第7版」日本語版を持参したところ、中国に於いても同様の翻訳作業がされており、その成果である出版物を一部頂いた。中国語への主たる翻訳者は Mrs. Deng Yilin の義父である李先生とのことであった。翌日に北京から廈門へ入る前夜、空き時間を利用して書店に立ち寄って、現代中国語から英語への大部2冊の辞書を求め、現代中国語で用いられている略字漢字の意味を探った。今後も継続される予定の国際単位系日本語版の制作に於いて、中国語版を参考にできれば良いとは思うが、異国の言葉を理解するのはなかなか難しくとも考えられる。

1998年に標記研究所を訪問した時にも話題に成ったが、標記研究所の新キャンパス建設に関しては事務的な作業が現在進行中であり、その計画を細めた冊子を筆者にも見せて頂いた。新キャンパスは現在のキャンパスに比べて約5.5倍の広さがあり、新キャンパスが完成しても現在のキャン
ンパスは標記研究院の一部として維持されると伺った。現在中国に於いては行政改革が進行中であり、西安にあるNational Institute of Measurement and Testing Technology (NIMTT) は、国家直属の組織から地方組織に移管され、計量に関する中国国家直属の研究組織としては標記研究院に一元化される由であった。この為に、中国から選出されている国際度量衡委員会のFeng Gao Jie (NIMTT) は、大学へ移される考慮をされているとProf. Shi からの伺った。標記研究院の新キャンパスは何時完成する予定かと質問したところ、Prof. Shi は4年後と答えられた。その後に、音響、超音波、振動に関する研究室を音響研究室の主任であるMr. Chen Jianlin の案内で見学した。超音波研究室では、振動子によって発生する超音波バワーを反射板の下で検出し、電流を読み取り、装置が設置されていた。超音波の標準としては電気天秤を用いる装置が準備されていた。振動研究室には、水平方向の振動と垂直方向の振動について、それぞれレーザーを用いて検出する装置があった。音響研究室には比較的電子機器群が整っている感じであった。無響室、B & K製の小さな無響器も所有していた。またこの研究室では、機器の校正データを自動的に取得して表示するソフトウェアを開発していると説明された。

2）中国科学院寒冷地域沙漠地帯環境開発研究所 凍土工学国家重点実験室

筆者は、1975年頃より超音波シンギアラウンド法による材料測定に関する研究を開始し、現在もその研究を継続している。各所で得られた成果を応用する目的で、2年間に渡って北海道大学低温科学研究所共同研究の代表者として、「超音波シンギアラウンド法による凍土の物理に関する研究」を実施した。標記国家重点実験室の盛教授は、その後に日本学術振興会の制度によって北海道大学低温科学研究所に採用しており、この共同研究に於いては実験作業を直接に担当した。北海道大学低温科学研究所共同研究支給研究成果に基づいて、盛教授と筆者は共同で研究論文を発表すると共に、その後も互いにEメールや電話を利用して連絡を継続している。更に、2000年8月22日（火）に北京で開催された第9回中科学技術協力委員会では、「超音波を用いた凍土の力学的物性測定」が、両者をコンタクトパーソンとする日中共同研究の課題として合意された。

初めて蘭州を訪問した筆者のために、午後8時頃であったにも拘らず盛教授は空港まで出迎えてくれた。空港から蘭州の中心街まではタクシーで1時間以上も離れており、我々は其処にある寒冷地域沙漠地域環境開発研究所まで直接に通り着いた。宿泊した凍土工学国家重点実験室のゲストハウスは、標記研究所のキャンパス内にある建物の最上階である4階部分を占めており、宿泊室、食堂、会議室を備えていた。その3階部分には、凍土工学国家重点実験室の研究成果を紹介するパネルが数多く掛かっていたが、盛教授の研究室は其処から廊下を通じた建物の入り口近くにあり、様々な研究設備がその建物に設置されていた。ゲストハウスの宿泊者は20人足らずであったが、食堂のスタッフはカクさんを含めて3人前、中国式のインスタントではない食事が提供された。翌日には、凍土工学国家重点実験室の設備を見学し、国家重点実験室の幹部とも面会した。

見学した国家重点実験室の主要設備としては、物質の力学特性を測定する大型の装置群が目を付いた。被測定固体物質中に於ける浸没波速度とせん断波速度の計測、被測定固体物質と超音波振動子が直接には接触しない状態で測定できることが極めて重要である。この原理に基づいて測定する為の装置一式も既に既に製造されている。標記研究所以下の温度で測定するための冷温槽も幾つかあり、実験に於ける大きな問題点はないと見受けられた。

当地に於いて頂いた凍土工学国家重点実験室の要覧等によって、この研究所が中国のチベット高原地域開発に於ける拠点と成しており、標高4000メートルのチベット高原に存在する永久凍土の研究が重要な課題と成っていると認識された。チベット高原地域を横断する道路は既に敷設されてい
るが、水の凍結融解が原因で様々な問題を引き起こしていると伺った。また、チベット高原地域に鉄道を敷設するとゆず大きな課題が、中国国家として重要に成っているようであった。盛助教授は筆者が蘭州を訪問する直前にまでチベット高原で調査をしており、筆者の蘭州滞在中に別の50人の現地で構成されるチベット高原調査隊、大型トラックで供給物資を積み込むなど、出発前の活発な準備作業をしていた。分内国上の理由からであろうが、中国政府は一般には外国人がチベット高原に入ることを認めてはいない。但し、然るべき理由を記述して申請し、特別な許可が得られれば我々もチベット高原に入ることができるであろう。日中共同研究の遂行が目的であれば、筆者がチベッド高原に入ることが認められるであろうと述べられた。

盛助教授が同席して、研究企画担当のProf. Maと会談した際に話題となったので、中国から技術援助をも希望していると認識された。そこで、日本における共同研究（Joint Research）と技術援助（Official Development Assistance）の扱いの違いを説明した。筆者は現在共同研究を申請しており、それが認められても機器の寄贈是不可能であるが、技術援助については情報収集を行うと述べた。翌日には、盛助教授と詳細な共同研究の打ち合わせを行った。現在チベット高原に於いて、地下30メートルの深さではボーリングによる調査が進められており、その深さまでで有れば地内でデータをサンプルを取得することが可能である。其処には様々な土や岩石が存在し、特に其処で地盤を構成している物質に係る水分挙動の把握と解析は重要な研究課題であると考えられる。液浸式超音波シングアラウンド法による各種弾性率の測定は蘭州にある国家重点実験室で行うが、チベット高原に於けるフィールドワークでは地下の地中温度や地中水分を測定し、土や岩石のサンプルを採取する。

3. 所感

北京の空港到着日は日曜日であった。中国への入国手続きを終えて外に出ると、タクシーと大声を上げる男がいたので、宿泊するホテルの名称と電話番号を示して彼に付いて行った。その男は直ぐ近くに止まっていた車に筆を案内して、一緒に車へと乗り込んできた。タクシーの運転手には少し言い争っていたようであったが、それほどは時間が掛からずに車は走り出し。するとその男は、懐から料金のリストを印刷したカードを取り出して筆者に示した。それらは何れもかなり高額であって、その中の最低金額であった空港からホテルまでの料金に関して、筆者が予想していた金額の5倍を超えていたので少し驚いた。それでもトラブルに巻き込まれるのは好まなかったので、直接にホテルまで行ってくれと告げた。その男はホテルの場所を良く知っており最短距離で到着した。ホテルの前にある道路は路幅の拡張中であり、車をホテルの玄関に停めるとすぐ少々手間取ったであろうが、其処までは入らずに道路脇で降ろされた。しかし彼は道路工事中の凸凹を厳しく述せて、それに注意してホテルの玄関まで行くようとは言っていた。

蘭州から成田への帰路で再び北京に立ち寄り、空港近くで旅行社に手配を依頼してあった別のホテルに1泊した。その際には大学院生の北さんが蘭州から北京まで同行してくれていて、彼の手助けも受けたが、空港からホテルまで無料のホテルバスを利用して到着した。翌日もホテルのチェックアウトをして、ホテルバスで十分に早く空港まで行ってみると、既に1人の日本人旅行者が航空会社のカウンターで待っていたので話し掛けた。彼は民間の会社に勤務されており、中国には商談で何度も渡航されている由であった。タクシーの件を話しとそれは筆者の無知であり、筆者が気付かなかった正式の乗り場であれば、其処に待機している車はタクシーメーターを使用しており、料金は正当であると説明された。但しその乗り場には通常は長蛇の列ができており、長時間に渡って
蘭州では、暑いという体感温度に関しては北京
と同様であったが、それに加えて日中は曇れが
もしくは雲の一部に雨が降ることが多かった。
すなわち、この地域では雨が降ることがあり、その
雨は河川の水源を供給している。兰花はただ単に通過
しているのみであり、赤みがかかった茶色の水には魚
も住まない。市街の背後には五泉山があり入場料
が必要な公園としている。蘭州には仏教寺院があり、山
腹からは多くの泉が湧き出すでしょう。城墙があり、数
々ある川が流れ、特に池もあった。その中腹まで
登り、蘭州市街を一望したが、市街には緑化は殆
ど見られなかった。案内してくれた盛助教授に聞く
と農作物を作っている場所もあるが、蘭州からの帰路で
空港に向かう従の車窓からの景色では、水分が少しは有
りと見られる道路の
低地に、元気のないトウモロコシとヒマワリの畑
が多少見られるのだった。周囲の丘には僅か
なブッシュも見られたが、一面に水気のない土色
をした緑や山頂などが目立っていた。植林された
樹木も少しは存在したが、幹が十分に高く成長
ずに精々比較的小さな枝が散らす状態で終わって
いる状況は異様に感じられた。

蘭州を去る前日に、盛助教授の宿舎で夕食に招
待された。職員用の宿舎は寒冷地域沙漠地域環境
開発研究所の敷地内にあり、宿泊していた凍土工
程研究室では徒歩で2、3分の場所であっ
た。この建物にはエレベーターの設備がなく
て、8階建て最上階の宿舎まで徒歩により階段を
登った際には息が切れた。此处では9階以上の建
物に於いてのみエレベーターが設置されることに
なっているよであった。計量科学研究所のある北
京では、7階以上の建物にはエレベーターが設置
されるほど、こんな所にも地域差があるのかと認
識した。計量科学研究所の敷地内には職員
用の宿舎があった。また、北京市内を移動中に
見かけたアパートにも大きな寄せ畑で計量科学
研究所の近くにあるので、Mrs. Deng
に聞くと計量科学研究所の職員用宿舎であ
ると説明された。盛助教授の宿舎は広さ約70平
方メートルと伺ったが、きれいに整頓され家具が
置かれていた。そして近辺にある宿舎は殆ど同様
な間取りであると伺った。盛助教授が凍土工
程研究室を退職した際に、最初は別の場所に
ある条件の悪いアパートに住んでいたが、日本学
術振興会の制度で1997年に日本に滞在する前
に、この宿舍を購入したが、中国では各
々の研究所が職員用宿舎を建設し、職員は其処に
居住するが、入居の条件としてその宿舎を購入す
ることと定めているようであった。人によっては
ローンで購入する場合もあるようであったが、盛
助教授は現金で購入し宿舍費は払っていないと
伺った。また、これら研究所職員用宿舎には、研
究所職員のみではなくて、以前から共処に住んで
いて教国を提供した者等の部外者も居住している
ようであった。

帰国直前に北京の空港で雑談をした。中国は民主
化・経済開放の途上にあるが、その過程では規
則の適用がルーズな面もあり、国民の違法精神が
希薄な場合もある。所得格差も増加の傾向になり、空
港から北京市街までの行程で利用した数十分の
tクシーで、筆者が被害にあった法外な料金は、
通常に被等が受け取るサリーの1ヶ月分にも匹
敵するようである。以前にインドネシアを訪問し
た際にも感じたが、途上国が先進国を目指すとし
ても、その技術水準を向上する前提条件として、
国家の体制と国民の意識を改革することがまず必要
だと思われるのが実感である。中国は様々な可
能性が秘められた国であるが、その発展には様々
な課題を解決する必要も有ると感じられる。
操作も運搬も簡単などにかく速いヨットを作る

東京大学生産技術研究所 木下 健

1. Twin Ducksとは？

私達は現在のヨット（ディンギー、クルーザー）の性能をはるかに超えた次世代のヨットを大学院の学生諸君と一緒にボートデザイナーの堀内浩太郎氏と協力して開発中です。そのヨットは現在のヨットの4倍の航速をもち、車の上に乗せても手軽に運搬でき、アマチュアの日曜セーラーにも気軽に乗るヨットです。この技術革新は両ヨットに水中歯を取り付けたことにより可能となりました。さらに工夫して、その水中歯に働く揚力に片舷は上向き、もう一方の舷は下向きに作用させることに成功したことによります。この微小な揚力の創出を電気的なセンサー、アクチュエーターを一切使用せず、機械的なからくりのみで受動的な自動制御を達成しているところが、最大の特長です。従って、特別な訓練を必要とせず、アマチュアの日曜セーラーにも気軽に乗るようになりました。さらに容易に分解可能として、車の上に乗せても手軽に運搬できるように考えています。

このヨットは、ウィンドサーフィン以来の技術革新であると私達は考えています。ウィンドサーフィンは約30年前に従来の水上スポーツにはなかった高速度を実現し、年々愛好家を増やし遂にオリンピック種目まで取上げられました。私達のヨットはウィンドサーフィンに負けない高速を求める、しかも現在のヨットと同程度の風上への上り性能を持ちます。ウィンドサーフィンの運搬の手軽さに負けない配慮もします。ウィンドサーフィンは風上に上れないため、ある海域で行ったり来たりして遊べるだけですが、風上に上れる私達のヨットは目的地を定めてクルージングすることが出来ます。そのため私達のヨットは、マリンスポーツの普及と愛好家の拡大に寄与出来ると考えているのです。たとえば、相模湾、大阪湾全体は日帰りセーリングの舞台になり、江ノ島からなら大島、下田まで、習志野から沼津、友ヶ島まで、ちょっとひとっと走りで行くことが出来るようになるわけです。これほど自転車で町内を活動範囲としていた人が、自転車を手に入れて、週末に箱根や富士山にドライブに行く様になったのと同じと考えています。自転車と自動車の走る速さの比がちょうど4倍です。図1に、現状の優れた一人乗り艇であるSeahopperⅡと、スピードトライアル志向のプロ仕様の艇であるTrifoilerとの仕様の比較を示します。
2．開発の現状と今後の開発目標

（図2参照）
以来私達は実験を続けて数学モデルの構築とその精密化を行っています。今までのヨットはもちろん、ウィンドサーフィンも滑走出来ないくらいの微風、平均風速約3 m/sの穏やかな風でも、ちょっとしたブローを拾って翼走して、8ノット位で走っています。とにかく速いヨットです。図3は上方から6 m/sの風が吹いて来た時、各方向に何ノットの艇速で走れるかを示しています。

Saはセール面積であり、強風用（6.4m²）と弱風用（10.5m²）の場合が示してあります。ラジコン模型の実験では大波にも追従して安定して帆走しています。このヨットの開発コンセプトは次のとおりです。

・穏やかな微風（5 m/s以下）で離水できる。
・良い風（8〜10 m/s）では、20〜30ノットで帆走できる。
・アマチュアでも簡単にのりこませ、カートップで持ち運びできる。
・出艇、揚艇作業を含め一人で乗れる。

図3 現在のヨット、ウィンドサーフィンとの艇速比較
3. プロトタイプ

今回の実験艇の艇体は炭素繊維の布を利用したサンドイッチ構造であり、水中翼も炭素繊維を多用して軽量化されています。諸元は、全長4.5m、全幅（水中翼を除く）1.9m、重量70kg、帆面積10.5m²（軽風用）、6.4m²（強風用）です。図4はプロトタイプの図面です。図5は車の上に載せた場合です。
4. 振れ剛性の効果と帆走性能

先に述べたように、このヨットの最大の特長は左右の胴体の振れを許している点にあります。風が右真横から風速8 m/sで来た場合に、その振り剛性を変化させた場合の、釣り合いが取れる乗り手の左半分のデッキ上の許容移動範囲を図6に示します。図の右端が胴中央線で図はデッキの左半分を示しています。

振り剛性 Kn=0 (kg.m²/s²) の時はデッキ上のどこにいても釣り合いが取れますが、振り剛性が大きくなると、許容移動範囲は右前方に限られてきます。このような振り剛性は釣り合いを取るうえで重要な要素になっています。左右の胴体の振りを許すことにより、水中翼に働く揚力を片胴是上向き、もう一方の胴は下向きに作用させ、揚力の大きさを受動的に自動制御しています。

軽風用（10.5 m²）と、強風用（6.4 m²）のそれぞれの帆に対する帆走性能を数学モデルで計算した結果を示したのが図7、図8です。強風用の帆のほうが風上に高く上ることが分かります。その場合、現在のヨットと同じ位には風上に上ることが出来ます。

図6 真風速8 m/s時の左半分のデッキ上の乗員許容移動範囲
図7 10.5㎡の帆を利用した際の帆走性能

図8 6.4㎡の帆を利用した際の帆走性能
5. 今後の改良課題

前節で示した帆走性能は計算上のことです。現状での計算値と実験での実測値との比較は、図9に示すように、艇速が計算の3/4程度となっています。

流体力の推定誤差以外に、簡易な道具で計測しているため真風向、真風速、潮流向、潮流速、艇速の推定にも問題があると考えられます。また風上への上り性能や波の中での性能も確認する必要がありますが、実際は水中翼に空気吸込みが生じてしまい、改良の必要があります。操船性と空気吸込みの観点から方向安定性を再検討して無駄な大きな操舵を避けることも必要と考えています。しかし何れも解決可能な課題であり、なるべく早い時期に開発を完了したいと思っています。

そして、一般の皆様に気楽にTwin Ducksに乗って楽しんで頂きる日が近いことを、ひいてはマリンスポーツ全体の普及と愛好家の拡大に寄与したいと考えています。

6. 結わりに

最後に本研究にご協力頂いている
堀内浩太郎氏（日本ソーラー・人力ボート協会）、
犬飼泰彦氏（IHI、元大学院学生）、
加納裕義氏（三菱重工、元大学院学生）、
小林寛氏（大学院学生）、
鶴沼瀬氏（G H クラフト）、
金井紀彦氏（金井設計）、
新崎光晴氏（セプシーズ）、
津谷谷藤氏に深甚の謝意を表します。

図9 風速3.5m/sでの実験値と理論値の比較
主要設備のご紹介

計測船 第二いこい丸

水中音響計測用としてエンジン・補機類に防振対策を施した専用船です。
各種計測設備・測定器を搭載し、高精度・高効率化がはかれます。沼津周辺海域を熟知した
操船者が運行します。

<table>
<thead>
<tr>
<th>長さ</th>
<th>16.50 m</th>
<th>総トン数</th>
<th>17 Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>幅</td>
<td>3.20 m</td>
<td>許可海域</td>
<td>平水区域</td>
</tr>
<tr>
<td>最大速度</td>
<td>14 kt</td>
<td>定員</td>
<td>最大14名</td>
</tr>
<tr>
<td>計測室</td>
<td>4.5m×3.0m×1.8m</td>
<td>デッキクレーン</td>
<td>最大 0.5t</td>
</tr>
</tbody>
</table>
Sea Paradise

前回のNo.22で内浦湾が海軍技術研究所によって海上試験の海面に選択された理由を書きましたが、今回は海軍技術研究所時代の事を少し紹介します。

海軍技術研究所の沼津への進出は、昭和12年秋沼津に臨海実験基地として、牛臥山の澗にある大山元帥の別荘を借用したのに始まりました。昭和12年以降江の浦に本格的な基地を造成し、淡島に淡島実験室を新設して常時観測可能な基地とし、着々と施設を拡充していったら。昭和15年東京にあった海軍技術研究所の音響部門が電気技術部から独立して音響研究部となり、その本拠地が昭和16年1月に沼津市下香貫に設置され本格的な活動期に入りました。

下香貫の本部は、昭和18年末頃など完成状態であったが、最終的な総合臨海実験基地として計画された長井崎突端部（約6千坪）は土地買収を終わった状態で、建設を待たずに終戦を迎えました。

研究の場所は現在の下香貫の沼津市立第三中学校とその周辺地域約82,000坪で、他に江の浦、淡島、大瀬崎、長井崎、多比、下土狩などにも用地・施設があったそうです。敷地内には、研究所、工員宿舎、実験用水槽、作業場、倉庫などがあり、海軍の武官・文官をはじめ従用工員・女子挺身隊から最高2,000人もの人材が働いていました。

沖電気もこの時期2隻の実験船を東京から回航して沼津の狩野川河口を基地として内浦湾で実験をしています。ある時内浦湾で実験していた折り、海が荒れ沼津に帰れなくなり内浦湾の重荷に避難したそうです。その時宿泊した宿が三津浜の安田屋旅館でした。その後安田屋旅館を基地にすることが多くなり、現在のオキシテックの基礎が確立していきました。

現在、下香貫に海軍技研所があり、大瀬崎に大瀬実験所の建家、淡島に海軍桟橋が残っています。大瀬実験所は防衛庁技術研究本部第5研究所大瀬実験所として現在も稼働しています。
営業内容

★ 長年培ってきた送受波器校正技術で、お客様のよりよい水中音響計測のお手伝いをいたします。

1. 各種送受波器の感度測定・校正
 - 相互校正・比較校正（海上、水槽、カプラ）
 - 指向性計測
 - インピーダンス計測

★ 水中音響機器の開発・運用に必要な条件を正しく把握されるためのお手伝いをいたします。

2. 水中音響計測
 - 海中雑音測定・解析
 - 船舶航走雑音計測・解析
 - 艦船水中放射雑音計測・解析
 - 吸音材等の反射損失・透過損失計測
 - 各種標的のターゲットストレングス計測

★ 豊富な実績と洗練された技術力で、お客様がご希望される海上試験を実現いたします。

3. 海上試験の企画・施工・工法開発
 - 各種海上試験のコンサルティング、実施
 - 旋回機構・昇降機構等測定用機材の開発、製作、設置
 - 各種センサー等の海中設置工事
 - 保有船の整備、揚収作業
 - 海上試験用各種治具の設計、製作

★ 水中音響を熟知したスタッフと、直ちに評価が行える充実したテストサイトを用意して、お客様の水中音響開発のお手伝いをいたします。

4. 送波器・受波器の設計
5. 各種回路設計
 - アナログ回路全般
 - デジタル回路全般

6. 計測用プログラム設計
7. 音波応用機器の設計製作
 - 音響騒音装置
 - 自動感度校正装置
 - 無響水槽の音響設計

8. 環境試験
 - 水圧試験
 - 温水寿命試験